# 查看完整版本 : M1 Definite Integral

chengtt 2015-9-17 08:09 AM

## M1 Definite Integral

[url=http://www.discuss.com.hk/iphone][img=100,23]http://i.discuss.com.hk/d/images/r10/iphoneD.jpg[/img][/url]

top11 2015-9-18 04:08 AM

:smile_o12:

[attach]4779976[/attach]

[[i] 本帖最後由 top11 於 2015-9-18 04:13 AM 編輯 [/i]]

chengtt 2015-9-18 10:33 AM

## 回覆 #2: M1 Definite Integral

Thank you so much! 我仲以為要in到先證到！完全錯左方向！唔該晒！

[url=http://www.discuss.com.hk/iphone][img=100,23]http://i.discuss.com.hk/d/images/r10/iphoneD.jpg[/img][/url]

hkpal 2015-9-18 12:03 PM

[quote]原帖由 [i]top11[/i] 於 2015-9-18 04:08 AM 發表 [url=http://www.discuss.com.hk/redirect.php?goto=findpost&pid=425990628&ptid=25103277][img]http://www.discuss.com.hk/images/common/back.gif[/img][/url]

:smile_o12:

4779976 [/quote]

Actually, one can change the Int(0.1,10) to Int(0.1,1)+Int(1,10).  By substituting one of these with u=1/x, one can see that the two components cancel each other.

chengtt 2015-9-18 12:36 PM

## 回覆 #4: M1 Definite Integral

Oh! Thx! I learnt a lot! ������������

[url=http://www.discuss.com.hk/iphone][img=100,23]http://i.discuss.com.hk/d/images/r10/iphoneD.jpg[/img][/url]

top11 2015-9-18 12:48 PM

[quote]原帖由 [i]hkpal[/i] 於 2015-9-18 12:03 PM 發表 [url=http://www.discuss.com.hk/redirect.php?goto=findpost&pid=426008674&ptid=25103277][img]http://www.discuss.com.hk/images/common/back.gif[/img][/url]

Actually, one can change the Int(0.1,10) to Int(0.1,1)+Int(1,10).  By substituting one of these with u=1/x, one can see that the two components cancel each other. [/quote]
Great Method too!

Cheers!

:smile_o12::smile_o12: