# 查看完整版本 : 數學微積分問題

alexng223 2021-11-1 20:36

[attach]12803728[/attach]

[attach]12803729[/attach]

top11 2021-11-3 04:20

[quote]原帖由 [i]alexng223[/i] 於 2021-11-1 08:36 PM 發表 [url=https://www.discuss.com.hk/redirect.php?goto=findpost&pid=542084933&ptid=30253653][img]https://www.discuss.com.hk/images/common/back.gif[/img][/url]

12803728

12803729 [/quote]
[attach]12806607[/attach]

ttkwan 2021-11-9 00:13

[quote]原帖由 [i]top11[/i] 於 2021-11-3 04:20 AM 發表 [url=https://www.discuss.com.hk/redirect.php?goto=findpost&pid=542126233&ptid=30253653][img]https://www.discuss.com.hk/images/common/back.gif[/img][/url]

12806607 [/quote]

top11 2021-11-9 00:17

[quote]原帖由 [i]ttkwan[/i] 於 2021-11-9 12:13 AM 發表 [url=https://www.discuss.com.hk/redirect.php?goto=findpost&pid=542332497&ptid=30253653][img]https://www.discuss.com.hk/images/common/back.gif[/img][/url]

∫ [1 - cos(2y)] dy
= y - sin(2y)/2 + C

y = ωt

ttkwan 2021-11-9 00:27

[quote]原帖由 [i]top11[/i] 於 2021-11-9 12:17 AM 發表 [url=https://www.discuss.com.hk/redirect.php?goto=findpost&pid=542332559&ptid=30253653][img]https://www.discuss.com.hk/images/common/back.gif[/img][/url]

∫ [1 - cos(2y)] dy
= y - sin(2y)/2 + C

y = ωt [/quote]

top11 2021-11-9 00:29

[quote]原帖由 [i]ttkwan[/i] 於 2021-11-9 12:27 AM 發表 [url=https://www.discuss.com.hk/redirect.php?goto=findpost&pid=542332693&ptid=30253653][img]https://www.discuss.com.hk/images/common/back.gif[/img][/url]

d/dy [ y - sin(2y)/2 ]
= 1 - cos(2y)/2 × 2
= 1 - cos(2y)

ttkwan 2021-11-9 00:42

[quote]原帖由 [i]top11[/i] 於 2021-11-9 12:29 AM 發表 [url=https://www.discuss.com.hk/redirect.php?goto=findpost&pid=542332710&ptid=30253653][img]https://www.discuss.com.hk/images/common/back.gif[/img][/url]

d/dy [ y - sin(2y)/2 ]
= 1 - cos(2y)/2 × 2
= 1 - cos(2y)