查看完整版本 : 數學題求解答

好望角234 2022-10-23 14:09

[attach]13689702[/attach]

[[i] 本帖最後由 好望角234 於 2022-10-24 21:48 編輯 [/i]]

好望角234 2022-10-23 21:12

好望角234 2022-10-24 20:49

色小緣 2022-10-25 21:48

[quote]原帖由 [i]好望角234[/i] 於 2022-10-23 14:09 發表 [url=https://www.discuss.com.hk/redirect.php?goto=findpost&pid=553126290&ptid=30826324][img]https://www.discuss.com.hk/images/common/back.gif[/img][/url]
[img]https://img.discuss.com.hk/d/attachments/day_221023/20221023_b4198b4d290b12430d41QZ4cY4zxz9Ck.jpg[/img] [/quote]
111...111 = 2ⁿ⁺¹ - 1111...111 + 11...111= 2ⁿ⁺¹ - 1 + 11...111= 2ⁿ⁺¹ +11...110= 1011...10There are n 1s

CHL46 2022-10-28 23:01

一隻蠢豬 2022-11-6 11:05

好深喎[attach]13726897[/attach]

top11 2022-11-8 15:35

[quote]原帖由 [i]好望角234[/i] 於 2022-10-23 14:09 發表 [url=https://www.discuss.com.hk/redirect.php?goto=findpost&pid=553126290&ptid=30826324][img]https://www.discuss.com.hk/images/common/back.gif[/img][/url]
[img]https://img.discuss.com.hk/d/attachments/day_221023/20221023_b4198b4d290b12430d41QZ4cY4zxz9Ck.jpg[/img] [/quote]
呢題幾好喎。
(係邊一個課題的題目?知唔知個chapter topic名?)

[ (n+1)個1的2進位數 ] + [ n個1的2進位數 ]
= [ (n+1)個1的2進位數 [color=#ff0000]+ 1[/color] ] + [ n個1的2進位數 [color=#ff0000]- 1[/color] ]
= 1000...000 (共 n+1 個 0) + 111....110 (共 n-1 個 1)
= 10111...110 (這個是一個 n+2 位數, 只有2個0)

所以答案是有 n 個 1。

以下是一些個別情況的驗證。

若 n = 2, 那
111 + 11
= 1000 + 10
= 1010

若 n = 3, 那
1111 + 111
= 10000 + 110
= 10110

若 n = 4, 那
11111 + 1111
= 100000 + 1110
= 101110

若 n = 5, 那
111111 + 11111
= 1000000 + 11110
= 1011110
頁: [1]
查看完整版本: 數學題求解答